费用流
在看这篇文章前请先看 网络流简介 这篇 wiki 的定义部分
费用流¶
给定一个网络 G=(V,E) ,每条边除了有容量限制 c(u,v) ,还有一个单位限制 w(u,v)
当 (u,v) 的流量为 f(u,v) 时,需要花费 f(u,v)\times w(u,v) .
w 也满足斜对称性,即 w(u,v)=-w(v,u) .
则该网络中总花费最小的最大流称为 最小费用最大流 ,即在最大化 \sum_{(s,v)\in E}f(s,v) 的前提下最小化 \sum_{(u,v)\in E}f(u,v)\times w(u,v) .
费用¶
我们定义一条边的费用 w(u,v) 表示边 (u,v) 上单位流量的费用。也就是说,当边 (u,v) 的流量为 f(u,v) 时,需要花费 f(u,v)\times w(u,v) 的费用。
最小费用最大流¶
网络流图中,花费最小的最大流被称为 最小费用最大流 ,这也是接下来我们要研究的对象。
MCMF 算法¶
在最大流的 EK 算法求解最大流的基础上,把 用 BFS 求解任意增广路 改为 用 SPFA 求解单位费用之和最小的增广路 即可
相当于把 w(u,v) 作为边权,在残存网络上求最短路
核心代码
struct qxx {
int nex, t, v, c;
};
qxx e[M];
int h[N], cnt = 1;
void add_path(int f, int t, int v, int c) {
e[++cnt] = (qxx){h[f], t, v, c}, h[f] = cnt;
}
void add_flow(int f, int t, int v, int c) {
add_path(f, t, v, c);
add_path(t, f, 0, -c);
}
int dis[N], pre[N], incf[N];
bool vis[N];
bool spfa() {
memset(dis, 0x3f, sizeof(dis));
queue<int> q;
q.push(s), dis[s] = 0, incf[s] = INF, incf[t] = 0;
while (q.size()) {
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = h[u]; i; i = e[i].nex) {
const int &v = e[i].t, &w = e[i].v, &c = e[i].c;
if (!w || dis[v] <= dis[u] + c) continue;
dis[v] = dis[u] + c, incf[v] = min(w, incf[u]), pre[v] = i;
if (!vis[v]) q.push(v), vis[v] = 1;
}
}
return incf[t];
}
int maxflow, mincost;
void update() {
maxflow += incf[t];
for (int u = t; u != s; u = e[pre[u] ^ 1].t) {
e[pre[u]].v -= incf[t], e[pre[u] ^ 1].v += incf[t];
mincost += incf[t] * e[pre[u]].c;
}
}
// 调用:while(spfa())update();
类 Dinic 算法¶
我们可以在 Dinic 算法的基础上进行改进,把 BFS 求分层图改为用 SPFA(由于有负权边,所以不能直接用 Dijkstra)来求一条单位费用之和最小的路径,也就是把 w(u,v) 当做边权然后在残量网络上求最短路,当然在 DFS 中也要略作修改。这样就可以求得网络流图的 最小费用最大流 了。
如何建 反向边 ?对于一条边 (u,v,w,c) (其中 w 和 c 分别为容量和费用),我们建立正向边 (u,v,w,c) 和反向边 (v,u,0,-c) (其中 -c 是使得从反向边经过时退回原来的费用)。
优化 :如果你是“关于 SPFA,它死了”言论的追随者,那么你可以使用 Primal-Dual 原始对偶算法将 SPFA 改成 Dijkstra!
时间复杂度 :可以证明上界为 O(nmf) ,其中 f 表示流量。
代码实现
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
const int N = 5e3 + 5, M = 1e5 + 5;
const int INF = 0x3f3f3f3f;
int n, m, tot = 1, lnk[N], cur[N], ter[M], nxt[M], cap[M], cost[M], dis[N], ret;
bool vis[N];
void add(int u, int v, int w, int c) {
ter[++tot] = v, nxt[tot] = lnk[u], lnk[u] = tot, cap[tot] = w, cost[tot] = c;
}
void addedge(int u, int v, int w, int c) { add(u, v, w, c), add(v, u, 0, -c); }
bool spfa(int s, int t) {
memset(dis, 0x3f, sizeof(dis));
memcpy(cur, lnk, sizeof(lnk));
std::queue<int> q;
q.push(s), dis[s] = 0, vis[s] = 1;
while (!q.empty()) {
int u = q.front();
q.pop(), vis[u] = 0;
for (int i = lnk[u]; i; i = nxt[i]) {
int v = ter[i];
if (cap[i] && dis[v] > dis[u] + cost[i]) {
dis[v] = dis[u] + cost[i];
if (!vis[v]) q.push(v), vis[v] = 1;
}
}
}
return dis[t] != INF;
}
int dfs(int u, int t, int flow) {
if (u == t) return flow;
vis[u] = 1;
int ans = 0;
for (int &i = cur[u]; i && ans < flow; i = nxt[i]) {
int v = ter[i];
if (!vis[v] && cap[i] && dis[v] == dis[u] + cost[i]) {
int x = dfs(v, t, std::min(cap[i], flow - ans));
if (x) ret += x * cost[i], cap[i] -= x, cap[i ^ 1] += x, ans += x;
}
}
vis[u] = 0;
return ans;
}
int mcmf(int s, int t) {
int ans = 0;
while (spfa(s, t)) {
int x;
while ((x = dfs(s, t, INF))) ans += x;
}
return ans;
}
int main() {
int s, t;
scanf("%d%d%d%d", &n, &m, &s, &t);
while (m--) {
int u, v, w, c;
scanf("%d%d%d%d", &u, &v, &w, &c);
addedge(u, v, w, c);
}
int ans = mcmf(s, t);
printf("%d %d\n", ans, ret);
return 0;
}
习题¶
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:OI-wiki
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用