拓扑排序
定义¶
拓扑排序的英文名是 Topological sorting。
拓扑排序要解决的问题是给一个图的所有节点排序。
我们可以拿大学选课的例子来描述这个过程,比如学习大学课程中有:单变量微积分,线性代数,离散数学概述,概率论与统计学概述,语言基础,算法导论,机器学习。当我们想要学习 算法导论 的时候,就必须先学会 离散数学概述 和 概率论与统计学概述,不然在课堂就会听的一脸懵逼。当然还有一个更加前的课程 单变量微积分。这些课程就相当于几个顶点 u , 顶点之间的有向边 (u,v) 就相当于学习课程的顺序。显然拓扑排序不是那么的麻烦,不然你是如何选出合适的学习顺序。下面将介绍如何将这个过程抽象出来,用算法来实现。
但是如果某一天排课的老师打瞌睡了,说想要学习 算法导论,还得先学 机器学习,而 机器学习 的前置课程又是 算法导论,然后你就一万脸懵逼了,我到底应该先学哪一个?当然我们在这里不考虑什么同时学几个课程的情况。在这里,算法导论 和 机器学习 间就出现了一个环,显然你现在没办法弄清楚你需要学什么了,于是你也没办法进行拓扑排序了。因而如果有向图中存在环路,那么我们就没办法进行 拓扑排序 了。
因此我们可以说 在一个 DAG(有向无环图) 中,我们将图中的顶点以线性方式进行排序,使得对于任何的顶点 u 到 v 的有向边 (u,v) , 都可以有 u 在 v 的前面。
还有给定一个 DAG,如果从 i 到 j 有边,则认为 j 依赖于 i 。如果 i 到 j 有路径( i 可达 j ),则称 j 间接依赖于 i 。
拓扑排序的目标是将所有节点排序,使得排在前面的节点不能依赖于排在后面的节点。
Kahn 算法¶
将入度为 0 的点组成一个集合 S
每次从 S 里面取出一个顶点 u (可以随便取)放入 L , 然后遍历顶点 u 的所有边 (u, v_1), (u, v_2), (u, v_3) \cdots , 并删除,并判断如果该边的另一个顶点,如果在移除这一条边后入度为 0 , 那么就将这个顶点放入集合 L 中。不断地重复取出顶点然后……
最后当集合为空后,就检查图中是否存在任何边。如果有,那么这个图一定有环路,否者返回 L , L 中顺序就是拓扑排序的结果
首先看来自 Wikipedia 的伪代码
L← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do
remove a node n from S
insert n into L
for each node m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges then
insert m into S
if graph has edges then
return error (graph has at least onecycle)
else
return L (a topologically sortedorder)
代码的核心是,是维持一个入度为 0 的顶点。
可以参考该图
对其排序的结果就是:2 -> 8 -> 0 -> 3 -> 7 -> 1 -> 5 -> 6 -> 9 -> 4 -> 11 -> 10 -> 12
时间复杂度¶
假设这个图 G = (V, E) 在初始化入度为 0 的集合 S 的时候就需要遍历整个图,并检查每一条边,因而有 O(E+V) 的复杂度。然后对该集合进行操作,显然也是需要 O(E+V) 的时间复杂度。
因而总的时间复杂度就有 O(E+V)
实现¶
伪代码:
bool toposort() {
q = new queue();
for (i = 0; i < n; i++)
if (in_deg[i] == 0) q.push(i);
ans = new vector();
while (!q.empty()) {
u = q.pop();
ans.push_back(u);
for each edge(u, v) {
if (--in_deg[v] == 0) q.push(v);
}
}
if (ans.size() == n) {
for (i = 0; i < n; i++)
std::cout << ans[i] << std::endl;
return true;
} else {
return false;
}
}
DFS 算法¶
// dfs 版本
bool dfs(int u) {
c[u] = -1;
for (int v = 0; v <= n; v++)
if (G[u][v]) {
if (c[v] < 0)
return false;
else if (!c[v])
dfs(v);
}
c[u] = 1;
topo.push_back(u);
return true;
}
bool toposort() {
topo.clear();
memset(c, 0, sizeof(c));
for (int u = 0; u <= n; u++)
if (!c[u])
if (!dfs(u)) return false;
reverse(topo.begin(), topo.end());
return true;
}
时间复杂度: O(E+V) 空间复杂度: O(V)
合理性证明¶
考虑一个图,删掉某个入度为 0 的节点之后,如果新图可以拓扑排序,那么原图一定也可以。反过来,如果原图可以拓扑排序,那么删掉后也可以。
应用¶
拓扑排序可以用来判断图中是否有环,
还可以用来判断图是否是一条链。
求字典序最大/最小的拓扑排序¶
将 Kahn 算法中的队列替换成最大堆/最小堆实现的优先队列即可,此时总的时间复杂度为 O(E+V \log{V}) 。
参考¶
- 离散数学及其应用。ISBN:9787111555391
- https://blog.csdn.net/dm_vincent/article/details/7714519
- Topological sorting, https://en.wikipedia.org/w/index.php?title=Topological_sorting&oldid=854351542
build本页面最近更新:,更新历史
edit发现错误?想一起完善? 在 GitHub 上编辑此页!
people本页面贡献者:OI-wiki
copyright本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用