Min_25 筛

由于其由 Min_25 发明并最早开始使用,故称「Min_25 筛」。

从此种筛法的思想方法来说,其又被称为「Extended Eratosthenes Sieve」。

其可以在 O\left(\frac{n^{\frac{3}{4}}}{\log{n}}\right)\Theta\left(n^{1 - \epsilon}\right) 的时间复杂度下解决一类 积性函数 的前缀和问题。
要求: f(p) 是一个关于 p 的项数较少的多项式或可以快速求值; f(p^{c}) 可以快速求值。

记号

  • 如无特别说明,本节中所有记为 p 的变量的取值集合均为全体质数。
  • x / y := \left\lfloor\frac{x}{y}\right\rfloor
  • \operatorname{isprime}(n) := [ |\{d : d \mid n\}| = 2 ] ,即 n 为质数时其值为 1 ,否则为 0
  • p_{k} :全体质数中第 k 小的质数(如: p_{1} = 2, p_{2} = 3 )。特别地,令 p_{0} = 1
  • \operatorname{lpf}(n) := [1 < n] \min\{p : p \mid n\} + [1 = n] ,即 n 的最小质因数。特别地, n=1 时,其值为 1
  • F_{\mathrm{prime}}(n) := \sum_{2 \le p \le n} f(p)
  • F_{k}(n) := \sum_{i = 2}^{n} [p_{k} \le \operatorname{lpf}(i)] f(i)

具体方法

观察 F_{k}(n) 的定义,可以发现答案即为 F_{1}(n) + f(1) = F_{1}(n) + 1


考虑如何求出 F_{k}(n) 。通过枚举每个 i 的最小质因子及其次数可以得到递推式:

\begin{aligned} F_{k}(n) &= \sum_{i = 2}^{n} [p_{k} \le \operatorname{lpf}(i)] f(i) \\ &= \sum_{\substack{k \le i \\ p_{i}^{2} \le n}} \sum_{\substack{c \ge 1 \\ p_{i}^{c} \le n}} f\left(p_{i}^{c}\right) ([c > 1] + F_{i + 1}\left(n / p_{i}^{c}\right)) + \sum_{\substack{k \le i \\ p_{i} \le n}} f(p_{i}) \\ &= \sum_{\substack{k \le i \\ p_{i}^{2} \le n}} \sum_{\substack{c \ge 1 \\ p_{i}^{c} \le n}} f\left(p_{i}^{c}\right) ([c > 1] + F_{i + 1}\left(n / p_{i}^{c}\right)) + F_{\mathrm{prime}}(n) - F_{\mathrm{prime}}(p_{k - 1}) \\ &= \sum_{\substack{k \le i \\ p_{i}^{2} \le n}} \sum_{\substack{c \ge 1 \\ p_{i}^{c + 1} \le n}} \left(f\left(p_{i}^{c}\right) F_{i + 1}\left(n / p_{i}^{c}\right) + f\left(p_{i}^{c + 1}\right)\right) + F_{\mathrm{prime}}(n) - F_{\mathrm{prime}}(p_{k - 1}) \end{aligned}

最后一步推导基于这样一个事实:对于满足 p_{i}^{c} \le n < p_{i}^{c + 1}c ,有 p_{i}^{c + 1} > n \iff n / p_{i}^{c} < p_{i} < p_{i + 1} ,故 F_{i + 1}\left(n / p_{i}^{c}\right) = 0
其边界值即为 F_{k}(n) = 0 (p_{k} > n)

假设现在已经求出了所有的 F_{\mathrm{prime}}(n) ,那么有两种方式可以求出所有的 F_{k}(n)

  1. 直接按照递推式计算。
  2. 从大到小枚举 p 转移,仅当 p^{2} < n 时转移增加值不为零,故按照递推式后缀和优化即可。

现在考虑如何计算 F_{\mathrm{prime}}{(n)}
观察求 F_{k}(n) 的过程,容易发现 F_{\mathrm{prime}} 有且仅有 1, 2, \dots, \left\lfloor\sqrt{n}\right\rfloor, n / \sqrt{n}, \dots, n / 2, nO(\sqrt{n}) 处的点值是有用的。
一般情况下, f(p) 是一个关于 p 的低次多项式,可以表示为 f(p) = \sum a_{i} p^{c_{i}}
那么对于每个 p^{c_{i}} ,其对 F_{\mathrm{prime}}(n) 的贡献即为 a_{i} \sum_{2 \le p \le n} p^{c_{i}}
分开考虑每个 p^{c_{i}} 的贡献,问题就转变为了:给定 n, s, g(p) = p^{s} ,对所有的 m = n / i ,求 \sum_{p \le m} g(p)

Notice: g(p) = p^{s} 是完全积性函数!

于是设 G_{k}(n) := \sum_{i = 1}^{n} \left[p_{k} < \operatorname{lpf}(i) \lor \operatorname{isprime}(i)\right] g(i) ,即埃筛第 k 轮筛完后剩下的数的 g 值之和。
对于一个合数 x ,必定有 \operatorname{lpf}(x) \le \sqrt{x} ,则 F_{\mathrm{prime}} = G_{\left\lfloor\sqrt{n}\right\rfloor} ,故只需筛到 G_{\left\lfloor\sqrt{n}\right\rfloor} 即可。
考虑 G 的边界值,显然为 G_{0}(n) = \sum_{i = 2}^{n} g(i) 。(还记得吗?特别约定了 p_{0} = 1
对于转移,考虑埃筛的过程,分开讨论每部分的贡献,有:

  1. 对于 n < p_{k}^{2} 的部分, G 值不变,即 G_{k}(n) = G_{k - 1}(n)
  2. 对于 p_{k}^{2} \le n 的部分,被筛掉的数必有质因子 p_{k} ,即 -g(p_{k}) G_{k - 1}(n / p_{k})
  3. 对于第二部分,由于 p_{k}^{2} \le n \iff p_{k} \le n / p_{k} ,故会有 \operatorname{lpf}(i) < p_{k}i 被减去。这部分应当加回来,即 g(p_{k}) G_{k - 1}(p_{k - 1})

则有:

G_{k}(n) = G_{k - 1}(n) - \left[p_{k}^{2} \le n\right] g(p_{k}) (G_{k - 1}(n / p_{k}) - G_{k - 1}(p_{k - 1}))

复杂度分析

对于 F_{k}(n) 的计算,其第一种方法的时间复杂度被证明为 O\left(n^{1 - \epsilon}\right) (见 zzt 集训队论文 2.3);
对于第二种方法,其本质即为洲阁筛的第二部分,在洲阁论文中也有提及(6.5.4),其时间复杂度被证明为 O\left(\frac{n^{\frac{3}{4}}}{\log{n}}\right)

对于 F_{\mathrm{prime}}(n) 的计算,事实上,其实现与洲阁筛第一部分是相同的。
考虑对于每个 m = n / i ,只有在枚举满足 p_{k}^{2} \le mp_{k} 转移时会对时间复杂度产生贡献,则时间复杂度可估计为:

\begin{aligned} T(n) &= \sum_{i^{2} \le n} O\left(\pi\left(\sqrt{i}\right)\right) + \sum_{i^{2} \le n} O\left(\pi\left(\sqrt{\frac{n}{i}}\right)\right) \\ &= \sum_{i^{2} \le n} O\left(\frac{\sqrt{i}}{\ln{\sqrt{i}}}\right) + \sum_{i^{2} \le n} O\left(\frac{\sqrt{\frac{n}{i}}}{\ln{\sqrt{\frac{n}{i}}}}\right) \\ &= O\left(\int_{1}^{\sqrt{n}} \frac{\sqrt{\frac{n}{x}}}{\log{\sqrt{\frac{n}{x}}}} \mathrm{d} x\right) \\ &= O\left(\frac{n^{\frac{3}{4}}}{\log{n}}\right) \end{aligned}

对于空间复杂度,可以发现不论是 F_{k} 还是 F_{\mathrm{prime}} ,其均只在 n / i 处取有效点值,共 O(\sqrt{n}) 个。
则可以使用 杜教筛一节中介绍的 trick 来将空间复杂度优化至 O(\sqrt{n})

有关代码实现

对于 F_{k}(n) 的计算,我们实现时一般选择实现难度较低的第一种方法,其在数据规模较小时往往比第二种方法的表现要好;

对于 F_{\mathrm{prime}}(n) 的计算,直接按递推式实现即可。

对于 p_{k}^{2} \le n ,可以用线性筛预处理出 s_{k} := F_{\mathrm{prime}}(p_{k}) 来替代 F_{k} 递推式中的 F_{\mathrm{prime}}(p_{k - 1})
相应地, G 递推式中的 G_{k - 1}(p_{k - 1}) = \sum_{i = 1}^{k - 1} g(p_{i}) 也可以用此方法预处理。

用 Extended Eratosthenes Sieve 求 积性函数 f 的前缀和时,应当明确以下几点:

  • 如何快速(一般是线性时间复杂度)筛出前 \sqrt{n}f 值;
  • f(p) 的多项式表示;
  • 如何快速求出 f(p^{c})

明确上述几点之后按顺序实现以下几部分即可:

  1. 筛出 [1, \sqrt{n}] 内的质数与前 \sqrt{n}f 值;
  2. f(p) 多项式表示中的每一项筛出对应的 G ,合并得到 F_{\mathrm{prime}} 的所有 O(\sqrt{n}) 个有用点值;
  3. 按照 F_{k} 的递推式实现递归,求出 F_{1}(n)

例题

求莫比乌斯函数的前缀和

\displaystyle \sum_{i = 1}^{n} \mu(i)

易知 f(p) = -1 。则 g(p) = -1, G_{0}(n) = \sum_{i = 2}^{n} g(i) = -n + 1
直接筛即可得到 F_{\mathrm{prime}} 的所有 O(\sqrt{n}) 个所需点值。

求欧拉函数的前缀和

\displaystyle \sum_{i = 1}^{n} \varphi(i)

首先易知 f(p) = p - 1
对于 f(p) 的一次项 (p) ,有 g(p) = p, G_{0}(n) = \sum_{i = 2}^{n} g(i) = \frac{(n + 2) (n - 1)}{2}
对于 f(p) 的常数项 (-1) ,有 g(p) = -1, G_{0}(n) = \sum_{i = 2}^{n} g(i) = -n + 1
筛两次加起来即可得到 F_{\mathrm{prime}} 的所有 O(\sqrt{n}) 个所需点值。

「LOJ #6053」简单的函数

给定 f(n)

f(n) = \begin{cases} 1 & n = 1 \\ p \operatorname{xor} c & n = p^{c} \\ f(a)f(b) & n = ab \land a \perp b \end{cases}

易知 f(p) = p - 1 + 2[p = 2] 。则按照筛 \varphi 的方法筛,对 2 讨论一下即可。
此处给出一种 C++ 实现:

参考代码
/* 「LOJ #6053」简单的函数 */
#include <algorithm>
#include <cmath>
#include <cstdio>

using i64 = long long;

constexpr int maxs = 200000;  // 2sqrt(n)
constexpr int mod = 1000000007;

template <typename x_t, typename y_t>
inline void inc(x_t &x, const y_t &y) {
  x += y;
  (mod <= x) && (x -= mod);
}
template <typename x_t, typename y_t>
inline void dec(x_t &x, const y_t &y) {
  x -= y;
  (x < 0) && (x += mod);
}
template <typename x_t, typename y_t>
inline int sum(const x_t &x, const y_t &y) {
  return x + y < mod ? x + y : (x + y - mod);
}
template <typename x_t, typename y_t>
inline int sub(const x_t &x, const y_t &y) {
  return x < y ? x - y + mod : (x - y);
}
template <typename _Tp>
inline int div2(const _Tp &x) {
  return ((x & 1) ? x + mod : x) >> 1;
}
template <typename _Tp>
inline i64 sqrll(const _Tp &x) {
  return (i64)x * x;
}

int pri[maxs / 7], lpf[maxs + 1], spri[maxs + 1], pcnt;

inline void sieve(const int &n) {
  for (int i = 2; i <= n; ++i) {
    if (lpf[i] == 0)
      pri[lpf[i] = ++pcnt] = i, spri[pcnt] = sum(spri[pcnt - 1], i);
    for (int j = 1, v; j <= lpf[i] && (v = i * pri[j]) <= n; ++j) lpf[v] = j;
  }
}

i64 global_n;
int lim;
int le[maxs + 1],  // x \le \sqrt{n}
    ge[maxs + 1];  // x > \sqrt{n}
#define idx(v) (v <= lim ? le[v] : ge[global_n / v])

int G[maxs + 1][2], Fprime[maxs + 1];
i64 lis[maxs + 1];
int cnt;

inline void init(const i64 &n) {
  for (i64 i = 1, j, v; i <= n; i = n / j + 1) {
    j = n / i;
    v = j % mod;
    lis[++cnt] = j;
    idx(j) = cnt;
    G[cnt][0] = sub(v, 1ll);
    G[cnt][1] = div2((i64)(v + 2ll) * (v - 1ll) % mod);
  }
}

inline void calcFprime() {
  for (int k = 1; k <= pcnt; ++k) {
    const int p = pri[k];
    const i64 sqrp = sqrll(p);
    for (int i = 1; lis[i] >= sqrp; ++i) {
      const i64 v = lis[i] / p;
      const int id = idx(v);
      dec(G[i][0], sub(G[id][0], k - 1));
      dec(G[i][1], (i64)p * sub(G[id][1], spri[k - 1]) % mod);
    }
  }
  /* F_prime = G_1 - G_0 */
  for (int i = 1; i <= cnt; ++i) Fprime[i] = sub(G[i][1], G[i][0]);
}

inline int f_p(const int &p, const int &c) {
  /* f(p^{c}) = p xor c */
  return p xor c;
}

int F(const int &k, const i64 &n) {
  if (n < pri[k] || n <= 1) return 0;
  const int id = idx(n);
  i64 ans = Fprime[id] - (spri[k - 1] - (k - 1));
  if (k == 1) ans += 2;
  for (int i = k; i <= pcnt && sqrll(pri[i]) <= n; ++i) {
    i64 pw = pri[i], pw2 = sqrll(pw);
    for (int c = 1; pw2 <= n; ++c, pw = pw2, pw2 *= pri[i])
      ans +=
          ((i64)f_p(pri[i], c) * F(i + 1, n / pw) + f_p(pri[i], c + 1)) % mod;
  }
  return ans % mod;
}

int main() {
  scanf("%lld", &global_n);
  lim = sqrt(global_n);

  sieve(lim + 1000);
  init(global_n);
  calcFprime();
  printf("%lld\n", (F(1, global_n) + 1ll + mod) % mod);

  return 0;
}

评论