快速傅里叶变换

前置知识: 复数

本文将介绍一种算法,它支持在 O(n\log n) 的时间内计算两个 n 度的多项式的乘法,比朴素的 O(n^2) 算法更高效。由于两个整数的乘法也可以被当作多项式乘法,因此这个算法也可以用来加速大整数的乘法计算。

概述

离散傅里叶变换(Discrete Fourier Transform,缩写为 DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其 DTFT 的频域采样。

FFT 是一种高效实现 DFT 的算法,称为快速傅立叶变换(Fast Fourier Transform,FFT)。它对傅里叶变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。快速数论变换 (NTT) 是快速傅里叶变换(FFT)在数论基础上的实现。

在 1965 年,Cooley 和 Tukey 发表了快速傅里叶变换算法。事实上 FFT 早在这之前就被发现过了,但是在当时现代计算机并未问世,人们没有意识到 FFT 的重要性。一些调查者认为 FFT 是由 Runge 和 König 在 1924 年发现的。但事实上高斯早在 1805 年就发明了这个算法,但一直没有发表。

多项式的表示

系数表示法

系数表示法就是用一个多项式的各个项系数来表达这个多项式,即使用一个系数序列来表示多项式:

f(x) = a_0+a_1x+a_2x^2+\cdots +a_{n}x^{n} \Leftrightarrow f(x) = \{a_0, a_1, \cdots,a_{n}\}

点值表示法

点值表示法是把这个多项式看成一个函数,从上面选取 n+1 个点,从而利用这 n+1 个点来唯一地表示这个函数。

为什么用 n+1 个点就能唯一地表示这个函数

想一下高斯消元法,两点确定一条直线。再来一个点,能确定这个直线中的另一个参数,那么也就是说 n+1 个点能确定 n 个参数(不考虑倍数点之类的没用点)。

\begin{array}{c} f(x_0) = y_0 = a_0 + a_1x_0+a_2x_0^2+a_3x_0^3+ \cdots + a_nx_0^n\\ f(x_1) = y_1 = a_0 + a_1x_1+a_2x_1^2+a_3x_1^3+ \cdots + a_nx_1^n\\ f(x_2) = y_2 = a_0 + a_1x_2+a_2x_2^2+a_3x_2^3+ \cdots + a_nx_2^n\\ \vdots\\ f(x_{n}) = y_{n} = a_0 + a_1x_{n}+a_2x_{n}^2+a_3x_{n}^3+ \cdots + a_nx_{n}^n \end{array}

那么用点值表示法表示 f(x) 如下

f(x) = a_0+a_1x+a_2x^2+\cdots +a_{n}x^{n} \Leftrightarrow f(x) = \{(x_0,y_0),(x_1,y_1), \cdots,(x_n,y_{n})\}

通俗地说,多项式由系数表示法转为点值表示法的过程,就是 DFT 的过程。相对地,把一个多项式的点值表示法转化为系数表示法的过程,就是 IDFT。而 FFT 就是通过取某些特殊的 x 的点值来加速 DFT 和 IDFT 的过程。

单位复根

考虑这样一个问题:

DFT 是把多项式从系数表示转到了点值表示,那么我们把点值相乘之后,再还原成系数表示,就解决了我们的问题。上述过程如下:

假设我们 DFT 过程对于两个多项式选取的 x 序列相同,那么可以得到

\begin{aligned} f(x)&={(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), \cdots, (x_n, f(x_n))}\\ g(x)&={(x_0, g(x_0)), (x_1, g(x_1)), (x_2, g(x_2)), \cdots, (x_n, g(x_n))} \end{aligned}

如果我们设 F(x) = f(x) \cdot g(x) ,那么容易得到 F(x) 的点值表达式:

F(x) = \{(x_0, f(x_0)g(x_0)), (x_1, f(x_1)g(x_1)), (x_2, f(x_2)g(x_2)), \cdots, (x_n, f(x_n)g(x_n))\}

但是我们要的是系数表达式,接下来问题变成了从点值回到系数。如果我们带入到高斯消元法的方程组中去,会把复杂度变得非常高。光是计算 x^i(0 \leq i \leq n) 就是 n 项,这就已经 O(n^2) 了,更别说还要把 n+1 个方程进行消元……

因此我们不去计算 x^i1-1 的幂都很好算,但是仅仅有两个也不够,我们至少需要 n+1 个。利用我们刚学的长度为 1 的虚数,这些数不管怎么乘长度都是 1 。我们需要的是 \omega^k=1 中的 \omega ,容易想到 -i1 是符合的。除此以外:

img

观察上图,容易发现这是一个单位圆(圆心为原点,半径为 1 ),单位圆上的向量模长均为 1 ,根据复数的运算法则,两个复数相乘,在复平面上表示为两个向量模长相乘,辐角相加。因此两个模长为 1 的向量相乘,得到的仍是模长为 1 的向量,辐角为两个向量辐角的和。因此我们可以将 \omega^k=1 中的 \omega 理解为复平面上的一个单位向量,满足它的辐角的 k 倍恰好是 360^\circ ——即把圆周 k 等分的角。我们把符合以上条件的复数(复平面上的向量)称为复根,用 \omega 表示。

定义

严谨地,我们称 x^n=1 在复数意义下的解是 n 次复根。显然,这样的解有 n 个,设 \omega_n=e^{\frac{2\pi i}{n}} ,则 x^n=1 的解集表示为 \{w_n^k\mid k=0,1\cdots,n-1\} 。我们称 w_nn 次单位复根(the n -th root of unity)。根据复平面的知识, n 次单位复根是复平面把单位圆 n 等分的第一个角所对应的向量。其他复根均可以用单位复根的幂表示。

另一方面,根据欧拉公式,还可以得到 \omega_n=e^{\frac{2\pi i}{n}}=\cos\left(\dfrac{2\pi i}{n}\right)+i\cdot \sin\left(\dfrac{2\pi i}{n}\right)

举个例子,当 n=4 时, w_n=i ,即 i 就是 4 次单位复根:

img

n = 4 的时候,相当于把单位圆等分 n=4 份。将每一份按照极角编号,那么我们只要知道 \omega_4^1 (因为他的角度是相当于单位角度),就能知道 \omega_4^0, \omega_4^1, \omega_4^2, \omega_4^3

\omega_4^0 恒等于 1\omega_4^2 的角度是 \omega_4^0 的两倍,所以 \omega_4^2 = (\omega_4^1)^2 = i^2=-1 ,依次以此类推。

性质

单位复根有三个重要的性质。对于任意正整数 n 和整数 k

\begin{aligned} \omega_n^n&=1\\ \omega_n^k&=\omega_{2n}^{2k}\\ \omega_{2n}^{k+n}&=-\omega_{2n}^k\\ \end{aligned}

快速傅里叶变换

FFT 算法的基本思想是分治。就 DFT 来说,它分治地来求当 x=\omega_n^k 的时候 f(x) 的值。他的分治思想体现在将多项式分为奇次项和偶次项处理。

举个例子,对于一共 8 项的多项式

f(x) = a_0 + a_1x + a_2x^2+a_3x^3+a_4x^4+a_5x^5+a_6x^6+a_7x^7

按照次数的奇偶来分成两组,然后右边提出来一个 x

\begin{split} f(x) &= (a_0+a_2x^2+a_4x^4+a_6x^6) + (a_1x+a_3x^3+a_5x^5+a_7x^7)\\ &= (a_0+a_2x^2+a_4x^4+a_6x^6) + x(a_1+a_3x^2+a_5x^4+a_7x^6) \end{split}

分别用奇偶次次项数建立新的函数

\begin{aligned} G(x) &= a_0+a_2x+a_4x^2+a_6x^3\\ H(x) &= a_1+a_3x+a_5x^2+a_7x^3 \end{aligned}

那么原来的 f(x) 用新函数表示为

F(x)=G\left(x^2\right) + x \times H\left(x^2\right)

利用单位复根的性质得到

\begin{split} \operatorname{DFT}(f(\omega_n^k)) &=\operatorname{DFT}(G((\omega_n^k)^2)) + \omega_n^k \times \operatorname{DFT}(H((\omega_n^k)^2))\\ &=\operatorname{DFT}(G(\omega_n^{2k})) + \omega_n^k \times \operatorname{DFT}(H(\omega_n^{2k}))\\ &=\operatorname{DFT}(G(\omega_{n/2}^k)) + \omega_n^k \times \operatorname{DFT}(H(\omega_{n/2}^k)) \end{split}

同理可得

\begin{split} \operatorname{DFT}(f(\omega_n^{k+n/2})) &=\operatorname{DFT}(G(\omega_n^{2k+n})) + \omega_n^{k+n/2} \times \operatorname{DFT}(H(\omega_n^{2k+n}))\\ &=\operatorname{DFT}(G(\omega_n^{2k})) - \omega_n^k \times \operatorname{DFT}(H(\omega_n^{2k}))\\ &=\operatorname{DFT}(G(\omega_{n/2}^k)) - \omega_n^k \times \operatorname{DFT}(H(\omega_{n/2}^k)) \end{split}

因此我们求出了 \operatorname{DFT}(G(\omega_{n/2}^k))\operatorname{DFT}(H(\omega_{n/2}^k)) 后,就可以同时求出 \operatorname{DFT}(f(\omega_n^k))\operatorname{DFT}(f(\omega_n^{k+n/2})) 。于是对 GH 分别递归 DFT 即可。

考虑到分治 DFT 能处理的多项式长度只能是 2^m(m \in N^ \ast ) ,否则在分治的时候左右不一样长,右边就取不到系数了。所以要在第一次 DFT 之前就把序列向上补成长度为 2^m(m \in N^\ast ) (高次系数补 0 )、最高项次数为 2^m-1 的多项式。

在代入值的时候,因为要代入 n 个不同值,所以我们代入 \omega_n^0,\omega_n^1,\omega_n^2,\cdots, \omega_n^{n-1} (n=2^m(m \in N^ \ast )) 一共 2^m 个不同值。

代码实现方面,STL 提供了复数的模板,当然也可以手动实现。两者区别在于,使用 STL 的 complex 可以调用 exp 函数求出 \omega_n 。但事实上使用欧拉公式得到的虚数来求 \omega_n 也是等价的。

递归版 FFT
#include <cmath>
#include <complex>

typedef std::complex<double> Comp;  // STL complex

const Comp I(0, 1);  // i
const int MAX_N = 1 << 20;

Comp tmp[MAX_N];

void DFT(Comp *f, int n, int rev) {  // rev=1,DFT; rev=-1,IDFT
  if (n == 1) return;
  for (int i = 0; i < n; ++i) tmp[i] = f[i];
  for (int i = 0; i < n; ++i) {  // 偶数放左边,奇数放右边
    if (i & 1)
      f[n / 2 + i / 2] = tmp[i];
    else
      f[i / 2] = tmp[i];
  }
  Comp *g = f, *h = f + n / 2;
  DFT(g, n / 2, rev), DFT(h, n / 2, rev);  // 递归 DFT
  Comp cur(1, 0), step(cos(2 * M_PI / n), sin(2 * M_PI * rev / n));
  // Comp step=exp(I*(2*M_PI/n*rev)); // 两个 step 定义是等价的
  for (int k = 0; k < n / 2; ++k) {
    tmp[k] = g[k] + cur * h[k];
    tmp[k + n / 2] = g[k] - cur * h[k];
    cur *= step;
  }
  for (int i = 0; i < n; ++i) f[i] = tmp[i];
}

时间复杂度 O(n\log n)

蝴蝶变换

这个算法还可以从“分治”的角度继续优化。我们每一次都会把整个多项式的奇数次项和偶数次项系数分开,一只分到只剩下一个系数。但是,这个递归的过程需要更多的内存。因此,我们可以先“模仿递归”把这些系数在原数组中“拆分”,然后再“倍增”地去合并这些算出来的值。

8 项多项式为例,模拟拆分的过程:

  • 初始序列为 \{x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7\}
  • 一次二分之后 \{x_0, x_2, x_4, x_6\},\{x_1, x_3,x_5, x_7 \}
  • 两次二分之后 \{x_0,x_4\} \{x_2, x_6\},\{x_1, x_3\},\{x_5, x_7 \}
  • 三次二分之后 \{x_0\}\{x_4\}\{x_2\}\{x_6\}\{x_1\}\{x_5\}\{x_3\}\{x_7 \}

规律:其实就是原来的那个序列,每个数用二进制表示,然后把二进制翻转对称一下,就是最终那个位置的下标。比如 x_1 是 001,翻转是 100,也就是 4,而且最后那个位置确实是 4。我们称这个变换为蝴蝶变换。

根据它的定义,我们可以在 O(n\log n) 的时间内求出每个数蝴蝶变换的结果:

蝴蝶变换实现(O(n\log n)
/*
 * 进行 FFT 和 IFFT 前的反置变换
 * 位置 i 和 i 的二进制反转后的位置互换
 *len 必须为 2 的幂
 */
void change(Complex y[], int len) {
  int i, j, k;
  for (int i = 1, j = len / 2; i < len - 1; i++) {
    if (i < j) swap(y[i], y[j]);
    // 交换互为小标反转的元素,i<j 保证交换一次
    // i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的
    k = len / 2;
    while (j >= k) {
      j = j - k;
      k = k / 2;
    }
    if (j < k) j += k;
  }
}

实际上,蝴蝶变换可以 O(n) 从小到大递推实现,设 len=2^k ,其中 k 表示二进制数的长度,设 R(x) 表示长度为 k 的二进制数 x 翻转后的数(高位补 0 )。我们要求的是 R(0),R(1),\cdots,R(n-1)

首先 R(0)=0

我们从小到大求 R(x) 。因此在求 R(x) 时, R\left(\left\lfloor \dfrac{x}{2} \right\rfloor\right) 的值是已知的。因此我们把 x 右移一位(除以 2 ),然后取反,再右移一位,就得到了 x 除了(二进制)个位 之外其他位的翻转结果。

考虑个位的翻转结果:如果个位是 0 ,翻转之后最高位就是 0 。如果个位是 1 ,则翻转后最高位是 1 ,因此还要加上 \dfrac{len}{2}=2^{k-1} 。综上

R(x)=\left\lfloor \frac{R\left(\left\lfloor \frac{x}{2} \right\rfloor\right)}{2} \right\rfloor + (x\bmod 2)\times \frac{len}{2}

举个例子:设 k=5len=(100000)_2 。为了翻转 (11001)_2

  1. 考虑 (1100)_2 ,我们知道 R((1100)_2)=R((01100)_2)=(00110)_2 ,再右移一位就得到了 (00011)_2
  2. 考虑个位,如果是 1 ,它就要翻转到数的最高位,即翻转数加上 (10000)_2=2^{k-1} ,如果是 0 则不用更改。
蝴蝶变换实现(O(n)
// 同样需要保证 len 是 2 的幂
// 记 rev[i] 为 i 翻转后的值
void change(Complex y[], int len) {
  for (int i = 0; i < len; ++i) {
    rev[i] = rev[i >> 1] >> 1;
    if (i & 1) {  // 如果最后一位是 1,则翻转成 len/2
      rev[i] |= len >> 1;
    }
  }
  for (int i = 0; i < len; ++i) {
    if (i < rev[i]) {  // 保证每对数只翻转一次
      swap(y[i], y[rev[i]]);
    }
  }
  return;
}

快速傅里叶逆变换

IDFT(傅里叶反变换)的作用,是把目标多项式的点值形式转换成系数形式。我们把单位复根代入多项式之后,就是下面这个样子(矩阵表示方程组)

\begin{bmatrix}y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix}1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n^1 & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\ 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)^2} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{bmatrix}

现在我们已经得到最左边的结果了,中间的 x 值在目标多项式的点值表示中也是一一对应的,所以,根据矩阵的基础知识,我们只要在式子两边左乘中间那个大矩阵的逆矩阵就行了。由于这个矩阵的元素非常特殊,他的逆矩阵也有特殊的性质,就是每一项取倒数,再除以 n ,就能得到他的逆矩阵。

为了使计算的结果为原来的倒数,根据单位复根的性质并结合欧拉公式,可以得到

\frac{1}{\omega_k}=\omega_k^{-1}=e^{-\frac{2\pi i}{k}}=\cos\left(\frac{2\pi i}{k}\right)+i\cdot \sin\left(-\frac{2\pi i}{k}\right)

因此我们可以尝试着把 π 取成 - 3.14159…,这样我们的计算结果就会变成原来的倒数,而其它的操作过程与 DFT 是完全相同的。我们可以定义一个函数,在里面加一个参数 1 或者是 -1 ,然后把它乘到 π 的身上。传入 1 就是 DFT,传入 -1 就是 IDFT。

对 IDFT 操作的证明

由于上述矩阵的逆矩阵并未给出严格的推理过程,因此这里提供另一种对 IDFT 操作的证明。考虑原本的多项式是 f(x)=a_0+a_1x+a_2x^2+\cdots+a_{n-1}x^{n-1}=\sum_{i=0}^{n-1}a_ix^i 。而 IDFT 就是把你的点值表示还原为系数表示。

考虑 构造法 。我们已知 y_i=f\left( \omega_n^i \right),i\in\{0,1,\cdots,n-1\} ,求 \{a_0,a_1,\cdots,a_{n-1}\} 。构造多项式如下

A(x)=\sum_{i=0}^{n-1}y_ix^i

相当于把 \{y_0,y_1,y_2,\cdots,y_{n-1}\} 当做多项式 A 的系数表示法。设 b_i=\omega_n^{-i} ,则多项式 Ax=b_0,b_1,\cdots,b_{n-1} 处的点值表示法为 \left\{ A(b_0),A(b_1),\cdots,A(b_{n-1}) \right\}

A(x) 的定义式做一下变换,可以将 A(b_k) 表示为

\begin{split} A(b_k)&=\sum_{i=0}^{n-1}f(\omega_n^i)\omega_n^{-ik}=\sum_{i=0}^{n-1}\omega_n^{-ik}\sum_{j=0}^{n-1}a_j(\omega_n^i)^{j}\\ &=\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}a_j\omega_n^{i(j-k)}=\sum_{j=0}^{n-1}a_j\sum_{i=0}^{n-1}\left(\omega_n^{j-k}\right)^i\\ \end{split}

S\left(\omega_n^a\right)=\sum_{i=0}^{n-1}\left(\omega_n^a\right)^i

a=0 时, S\left(\omega_n^a\right)=n

a\neq 0 时,我们错位相减

\begin{split} S\left(\omega_n^a\right)&=\sum_{i=0}^{n-1}\left(\omega_n^a\right)^i\\ \omega_n^a S\left(\omega_n^a\right)&=\sum_{i=1}^{n}\left(\omega_n^a\right)^i\\ S\left(\omega_n^a\right)&=\frac{\left(\omega_n^a\right)^n-\left(\omega_n^a\right)^0}{\omega_n^a-1}=0\\ \end{split}

也就是说

S\left(\omega_n^a\right)= \left\{\begin{split} n,a=0\\ 0,a\neq 0 \end{split}\right.

那么代回原式

A(b_k)=\sum_{j=0}^{n-1}a_jS\left(\omega_n^{j-k}\right)=a_k\cdot n

也就是说给定点 b_i=\omega_n^{-i} ,则 A 的点值表示法为

\begin{split} &\left\{ (b_0,A(b_0)),(b_1,A(b_1)),\cdots,(b_{n-1},A(b_{n-1})) \right\}\\ =&\left\{ (b_0,a_0\cdot n),(b_1,a_1\cdot n),\cdots,(b_{n-1},a_{n-1}\cdot n) \right\} \end{split}

综上所述,我们取单位根为其倒数,对 \{y_0,y_1,y_2,\cdots,y_{n-1}\} 跑一遍 FFT,然后除以 n 即可得到 f(x) 的系数表示。

证毕。

所以我们 FFT 函数可以集 DFT 和 IDFT 于一身。代码实现如下:

非递归版 FFT
/*
 * 做 FFT
 *len 必须是 2^k 形式
 *on == 1 时是 DFT,on == -1 时是 IDFT
 */
void fft(Complex y[], int len, int on) {
  change(y, len);
  for (int h = 2; h <= len; h <<= 1) {                  // 模拟合并过程
    Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));  // 计算当前单位复根
    for (int j = 0; j < len; j += h) {
      Complex w(1, 0);  // 计算当前单位复根
      for (int k = j; k < j + h / 2; k++) {
        Complex u = y[k];
        Complex t = w * y[k + h / 2];
        y[k] = u + t;  // 这就是吧两部分分治的结果加起来
        y[k + h / 2] = u - t;
        // 后半个 “step” 中的ω一定和 “前半个” 中的成相反数
        // “红圈”上的点转一整圈“转回来”,转半圈正好转成相反数
        // 一个数相反数的平方与这个数自身的平方相等
        w = w * wn;
      }
    }
  }
  if (on == -1) {
    for (int i = 0; i < len; i++) {
      y[i].x /= len;
    }
  }
}
FFT 模板( HDU 1402
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>

const double PI = acos(-1.0);
struct Complex {
  double x, y;
  Complex(double _x = 0.0, double _y = 0.0) {
    x = _x;
    y = _y;
  }
  Complex operator-(const Complex &b) const {
    return Complex(x - b.x, y - b.y);
  }
  Complex operator+(const Complex &b) const {
    return Complex(x + b.x, y + b.y);
  }
  Complex operator*(const Complex &b) const {
    return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
  }
};
/*
 * 进行 FFT 和 IFFT 前的反置变换
 * 位置 i 和 i 的二进制反转后的位置互换
 *len 必须为 2 的幂
 */
void change(Complex y[], int len) {
  int i, j, k;
  for (int i = 1, j = len / 2; i < len - 1; i++) {
    if (i < j) swap(y[i], y[j]);
    // 交换互为小标反转的元素,i<j 保证交换一次
    // i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的
    k = len / 2;
    while (j >= k) {
      j = j - k;
      k = k / 2;
    }
    if (j < k) j += k;
  }
}
/*
 * 做 FFT
 *len 必须是 2^k 形式
 *on == 1 时是 DFT,on == -1 时是 IDFT
 */
void fft(Complex y[], int len, int on) {
  change(y, len);
  for (int h = 2; h <= len; h <<= 1) {
    Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
    for (int j = 0; j < len; j += h) {
      Complex w(1, 0);
      for (int k = j; k < j + h / 2; k++) {
        Complex u = y[k];
        Complex t = w * y[k + h / 2];
        y[k] = u + t;
        y[k + h / 2] = u - t;
        w = w * wn;
      }
    }
  }
  if (on == -1) {
    for (int i = 0; i < len; i++) {
      y[i].x /= len;
    }
  }
}

const int MAXN = 200020;
Complex x1[MAXN], x2[MAXN];
char str1[MAXN / 2], str2[MAXN / 2];
int sum[MAXN];

int main() {
  while (scanf("%s%s", str1, str2) == 2) {
    int len1 = strlen(str1);
    int len2 = strlen(str2);
    int len = 1;
    while (len < len1 * 2 || len < len2 * 2) len <<= 1;
    for (int i = 0; i < len1; i++) x1[i] = Complex(str1[len1 - 1 - i] - '0', 0);
    for (int i = len1; i < len; i++) x1[i] = Complex(0, 0);
    for (int i = 0; i < len2; i++) x2[i] = Complex(str2[len2 - 1 - i] - '0', 0);
    for (int i = len2; i < len; i++) x2[i] = Complex(0, 0);
    fft(x1, len, 1);
    fft(x2, len, 1);
    for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
    fft(x1, len, -1);
    for (int i = 0; i < len; i++) sum[i] = int(x1[i].x + 0.5);
    for (int i = 0; i < len; i++) {
      sum[i + 1] += sum[i] / 10;
      sum[i] %= 10;
    }
    len = len1 + len2 - 1;
    while (sum[len] == 0 && len > 0) len--;
    for (int i = len; i >= 0; i--) printf("%c", sum[i] + '0');
    printf("\n");
  }
  return 0;
}

快速数论变换

若要计算的多项式系数是别的具有特殊意义的整数,那么 FFT 全部用浮点数运算,从时间上比整数运算慢,且只能用 long double 类型。

要应用数论变化从而避开浮点运算精度问题,参见 快速数论变换

参考文献

  1. 桃酱的算法笔记 .

评论