分数规划

分数规划用来求一个分式的极值。

形象一点就是,给出 a_ib_i ,求一组 w_i\in\{0,1\} ,最小化或最大化

\displaystyle\frac{\sum\limits_{i=1}^na_i\times w_i}{\sum\limits_{i=1}^nb_i\times w_i}

另外一种描述:每种物品有两个权值 ab ,选出若干个物品使得 \displaystyle\frac{\sum a}{\sum b} 最小/最大。

一般分数规划问题还会有一些奇怪的限制,比如『分母至少为 W 』。

求解

二分法

分数规划问题的通用方法是二分。

假设我们要求最大值。二分一个答案 mid ,然后推式子(为了方便少写了上下界):

\displaystyle \begin{aligned} &\frac{\sum a_i\times w_i}{\sum b_i\times w_i}>mid\\ \Longrightarrow&\sum a_i\times w_i-mid\times \sum b_i\cdot w_i>0\\ \Longrightarrow&\sum w_i\times(a_i-mid\times b_i)>0 \end{aligned}

那么只要求出不等号左边的式子的最大值就行了。如果最大值比 0 要大,说明 mid 是可行的,否则不可行。

求最小值的方法和求最大值的方法类似,读者不妨尝试着自己推一下。

Dinkelbach 算法

Dinkelbach 算法的大概思想是每次用上一轮的答案当做新的 L 来输入,不断地迭代,直至答案收敛。


分数规划的主要难点就在于如何求 \displaystyle \sum w_i\times(a_i-mid\times b_i) 的最大值/最小值。下面通过一系列实例来讲解该式子的最大值/最小值的求法。

实例

模板

n 个物品,每个物品有两个权值 ab 。求一组 w_i\in\{0,1\} ,最大化 \displaystyle\frac{\sum a_i\times w_i}{\sum b_i\times w_i} 的值。

a_i-mid\times b_i 作为第 i 个物品的权值,贪心地选所有权值大于 0 的物品即可得到最大值。

为了方便初学者理解,这里放上完整代码:

参考代码
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
using namespace std;

inline int read() {
  int X = 0, w = 1;
  char c = getchar();
  while (c < '0' || c > '9') {
    if (c == '-') w = -1;
    c = getchar();
  }
  while (c >= '0' && c <= '9') X = X * 10 + c - '0', c = getchar();
  return X * w;
}

const int N = 100000 + 10;
const double eps = 1e-6;

int n;
double a[N], b[N];

inline bool check(double mid) {
  double s = 0;
  for (int i = 1; i <= n; ++i)
    if (a[i] - mid * b[i] > 0)  // 如果权值大于 0
      s += a[i] - mid * b[i];   // 选这个物品
  return s > 0;
}

int main() {
  // 输入
  n = read();
  for (int i = 1; i <= n; ++i) a[i] = read();
  for (int i = 1; i <= n; ++i) b[i] = read();
  // 二分
  double L = 0, R = 1e9;
  while (R - L > eps) {
    double mid = (L + R) / 2;
    if (check(mid))  // mid 可行,答案比 mid 大
      L = mid;
    else  // mid 不可行,答案比 mid 小
      R = mid;
  }
  // 输出
  printf("%.6lf\n", L);
  return 0;
}

为了节省篇幅,下面的代码只保留 check 部分。主程序和本题是类似的。

POJ2976 Dropping tests

n 个物品,每个物品有两个权值 ab

你可以选 k 个物品 p_1,p_2,\cdots,p_k ,使得 \displaystyle\frac{\sum a_{p_i}}{\sum b_{p_i}} 最大。

输出答案乘 100 后四舍五入到整数的值。

把第 i 个物品的权值设为 a_i-mid\times b_i ,然后选最大的 k 个即可得到最大值。

inline bool cmp(double x, double y) { return x > y; }
inline bool check(double mid) {
  int s = 0;
  for (int i = 1; i <= n; ++i) c[i] = a[i] - mid * b[i];
  sort(c + 1, c + n + 1, cmp);
  for (int i = 1; i <= n - k + 1; ++i) s += c[i];
  return s > 0;
}

洛谷 4377 Talent Show

n 个物品,每个物品有两个权值 ab

你需要确定一组 w_i\in\{0,1\} ,使得 \displaystyle\frac{\sum w_i\times a_i}{\sum w_i\times b_i} 最大。

要求 \displaystyle\sum w_i\times b_i \geq W

本题多了分母至少为 W 的限制,因此无法再使用上一题的贪心算法。

可以考虑 01 背包。把 b_i 作为第 i 个物品的重量, a_i-mid\times b_i 作为第 i 个物品的价值,然后问题就转化为背包了。

那么 dp[n][W] 就是最大值。

一个要注意的地方: \sum w_i\times b_i 可能超过 W ,此时直接视为 W 即可。(想一想,为什么?)

double f[1010];
inline bool check(double mid) {
  for (int i = 1; i <= W; i++) f[i] = -1e9;
  for (int i = 1; i <= n; i++)
    for (int j = W; j >= 0; j--) {
      int k = min(W, j + b[i]);
      f[k] = max(f[k], f[j] + a[i] - mid * b[i]);
    }
  return f[W] > 0;
}

POJ2728 Desert King

每条边有两个权值 a_ib_i ,求一棵生成树 T 使得 \displaystyle\frac{\sum_{e\in T}a_e}{\sum_{e\in T}b_e} 最小。

a_i-mid\times b_i 作为每条边的权值,那么最小生成树就是最小值,

代码就是求最小生成树,我就不放代码了。

[HNOI2009]最小圈

每条边的边权为 w ,求一个环 C 使得 \displaystyle\frac{\sum_{e\in C}w}{|C|} 最小。

a_i-mid 作为边权,那么权值最小的环就是最小值。

因为我们只需要判最小值是否小于 0 ,所以只需要判断图中是否存在负环即可。

另外本题存在一种复杂度 O(nm) 的算法,如果有兴趣可以阅读 这篇文章

inline int SPFA(int u, double mid) {  // 判负环
  vis[u] = 1;
  for (int i = head[u]; i; i = e[i].nxt) {
    int v = e[i].v;
    double w = e[i].w - mid;
    if (dis[u] + w < dis[v]) {
      dis[v] = dis[u] + w;
      if (vis[v] || SPFA(v, mid)) return 1;
    }
  }
  vis[u] = 0;
  return 0;
}

inline bool check(double mid) {  // 如果有负环返回 true
  for (int i = 1; i <= n; ++i) dis[i] = 0, vis[i] = 0;
  for (int i = 1; i <= n; ++i)
    if (SPFA(i, mid)) return 1;
  return 0;
}

总结

分数规划问题是一类既套路又灵活的题目,一般使用二分解决。

分数规划问题的主要难点在于推出式子后想办法求出 \displaystyle\sum w_i\times(a_i-mid\times b_i) 的最大值/最小值,而这个需要具体情况具体分析。

习题


评论